........................................................

Задать вопрос – НА ФОРУМЕ
Получить информацию – В РАЗДЕЛАХ
Сказать спасибо – В ГОСТЕВОЙ
Искать – ЗДЕСЬ

Что:
где:

........................................................

Возьми кнопку себе на сайт!

<a href="http://w-rabbit.narod.ru">
<img src="http://w-rabbit.narod.ru/w-rabbit.gif"
width=88 hight=31 border=0></a>

........................................................

© 2001. Design by Grayscale

........................................................


Г. П. Лучинский

Валентность и степень окисления

Происхождение понятия валентности. Валентность химических элементов является одним из самых важных их свойств. Понятие валентности было введено в науку Э. Франкландом в 1852 г. Вначале понятие носило исключительно стехиометрический характер и вытекало из закона эквивалентов. Смысл понятия валентности вытекал из сопоставления величин атомной массы и эквивалента химических элементов.
С установлением атомно-молекулярных представлений понятие валентности приобрело определенный структурно-теоретический смысл. Под валентностью стали понимать способность одного атома данного элемента присоединять к себе то или иное число атомов другого химического элемента. За единицу валентности была принята соответствующая способность атома водорода, поскольку отношение атомной массы водорода к его эквиваленту равно единице. Таким образом валентность химического элемента определяли как способность его атома присоединять то или иное число атомов водорода. Если данный элемент не образовывал соединений с водородом, его валентность определялась как способность его атома замещать то или иное число атомов водорода в его соединениях.
Такое представление о валентности подтверждалось для простейших соединений.
На основе представления о валентности элементов возникло представление и о валентности целых групп. Так, например, группе OH, поскольку она присоединяла один атом водорода или замещала один атом водорода в других его соединениях, приписывалась валентность, равная единице. Однако представление о валентности теряло свою однозначность, когда дело касалось соединений более сложных. Так, например, в перекиси водорода H2O2 валентность кислорода должна быть признана равной единице, поскольку в этом соединении на каждый атом кислорода приходится один атом водорода. Однако известно, что каждый атом кислорода в H2O2 соединен с одним атомом водорода и одной одновалентной группой OH, т. е. кислород двухвалентен. Подобным образом валентность углерода в этане C2H6 должна быть признана равной трем, так как в этом соединении на каждый атом углерода приходится по три атома водорода, но, поскольку каждый атом углерода соединен с тремя атомами водорода и одной одновалентной групой CH3, валентность углерода в C2H6 равна четырем.
Следует заметить, что при формировании представлений о валентности отдельных элементов указанные осложняющие обстоятельства не принимались во внимание, а учитывался только состав простейших соединений. Но и при этом оказалось, что у многих элементов валентность в различных соединениях не одинакова. Особенно это было заметно для соединений некоторых элементов с водородом и кислородом, в которых проявлялась различная валентность. Так, в соединении с водородом валентность серы оказалась равной двум, а с кислородом – шести. Поэтому стали различать валентность по водороду и валентность по кислороду.
В дальнейшем в связи с представлением о том, что в соединениях одни атомы поляризованы положиельно, а другие отрицательно, понятие о валентности в кислородных и водородных соединениях было заменено понятием о положительной и отрицательной валентности.
Различные значения валентности у одних и тех же элементов проявлялись также в их различных соединениях с кислородом. Другими словами, одни и те же элементы оказались способны проявлять различную положительную валентность. Так появилось представление о переменной положительной валентности некоторых элементов. Что касается отрицательной валентности неметаллических элементов, то она, как правило, оказалась у одних и тех же элементов постоянной.
Элементов, проявляющих переменную положительную валентность, оказалось большинство. Однако для каждого из таких элементов характерной оказалась его максимальная валентность. Такая максимальная валентность получила название характеристичной.
В дальнейшем, в связи с возникновением и развитием электронной теории строения атома и химической связи, валентность стали связывать с числом электронов, переходящих от одного атома к другому, или с числом химических связей, возникающих между атомами в процессе образования химического соединения.
Электровалентность и ковалентность. Положительная или отрицательная валентность элемента – проще всего определить, если два элемента образовывали ионное соединение: считалось, что элемент, атом которого стал положительно заряженным ионом, проявил положительную валентность, а элемент, атом которого стал отрицательно заряженным ионом, – отрицательную. Численное значение валентности считалось равным величине заряда ионов. Поскольку ионы в соединениях образуются посредством отдачи и присоединения атомами электронов, величина заряда ионов обусловливается числом отданных (положительный) и присоединенных (отрицательный) атомами электронов. В соответствии с этим положительная валентность элемента измерялась числом отданных его атомом электронов, а отрицательная валентность – числом электронов, присоединенных данным атомом. Таким образом, поскольку валентность измерялась величиной электрического заряда атомов, она и получила название электровалентности. Ее называют также ионной валентностью.
Среди химических соединений встречаются такие, в молекулах которых атомы не поляризованы. Очевидно, для них понятие о положительной и отрицательной электровалентности неприменимо. Если же молекула составлена из атомов одного элемента (элементарные вещества), теряет смысл и обычное понятие о стехиометрической валентности. Однако, чтобы оценивать способность атомов присоединять то или иное число других атомов, стали использовать число химических связей, которые возникают между данным атомом и другими атомами при образовании химического соединения. Поскольку эти химические связи, представляющие собой электронные пары, одновременно принадлежащие обоим соединенным атомам, называются ковалентными, способность атома образовать то или иное число химических связей с другими атомами получила название ковалентности. Для установления ковалентности используются структурные формулы, в которых химические связи изображаются черточками.
Степень окисления и окислительное число. При реакциях образования ионных соединений переход электронов от одних реагирующих атомов или ионов к другим сопровождается соответствующим изменением величины или знака их электровалентности. При образовании соединений ковалентной природы такого изменения электровалентного состояния атомов фактически не происходит, а только имеет место перераспределение электронных связей, причем валентность исходных реагирующих веществ не изменяется. В настоящее время для характеристики состояния элемента в соединениях введено условное понятие степени окисления. Численное выражение степени окисления называют окислительным числом.
Окислительные числа атомов могут иметь положительное, нулевое и отрицательное значения. Положительное окислительное число определяется числом электронов, оттянутых от данного атома, а отрицательное окислительное число – числом притянутых данным атомом электронов. Окислительное число может быть приписано каждому атому в любом веществе, для чего нужно руководствоваться следующими простыми правилами:
1. Окислительные числа атомов в любых элементарных веществах равны нулю.
2. Окислительные числа элементарных ионов в веществах ионной природы равны значениям электрических зарядов этих ионов.
3. Окислительные числа атомов в соединениях ковалентной природы определяются при условном расчете, что каждый отянутый от атома электрон придает ему заряд, равный +1, а каждый притянутый электрон – заряд, равный –1.
4. Алгебраическая сумма окислительных чисел всех атомов любого соединения равна нулю.
5. Атом фтора во всех его соединениях с другими элементами имеет окислительное число –1.
Определение степени окисления связано с понятием об электроотрицательности элементов. С использованием этого понятия формулируется еще одно правило.
6. В соединениях окислительное число отрицательно у атомов элементов с большей электроотрицательностью и положительно – у атомов элементов с меньшей электроотрицательностью.
Понятие степени окисления, таким образом, пришло на смену понятию электровалентности. В связи с этим представляется нецелесообразным пользоваться и понятием ковалентности. Для характеристики элементов лучше применять понятие валентности, определяя ее числом электронов, используемых данным атомом для образования электронных пар, независимо от того, притягиваются они к данному атому, или, наоборот, оттягиваются от него. Тогда валентность будет выражаться числом без знака. В отличие от валентности степень окисления определяется числом электронов, оттянутых от данного атома, – положительная, или притянутых к нему, – отрицательная. Во многих случаях арифметические значения валентности и степени окисления совпадают – это вполне естественно. В некоторых же случаях числовые значения валентности и степени окисления отличаются друг от друга. Так, например, в молекулах свободных галогенов валентность обоих атомов равна единице, а степень окисления – нулю. В молекулах кислорода и перекиси водорода валентность обоих атомов кислорода равна двум, а степень окисления их в молекуле кислорода равна нулю, а в молекуле перекиси водорода – минус единице. В молекулах азота и гидразина – N4H2 – валентность обоих атомов азота равна трем, а степень окисления в молекуле элементарного азота – нулю, а в молекуле гидразина – минус двум.
Очевидно, что валентность характеризует атомы, только входящие в состав какого-либо соединения, хотя бы гомоядерного, т. е. состоящего из атомов одного элемента; о валентности же отдельных атомов говорить бессмысленно. Степень же окисления характеризует состояние атомов как входящих в какое-либо соединение, так и существующих отдельно.
Координационное число. Первоначальное понятие валентности оказалось явно недостаточным для установления природы более сложных соединений, чем рассмотренные выше. А. Вернер в 1891 г. для случаев, когда к молекулам соединений, в которых валентность элементов была полностью насыщена, присоединялись другие молекулы, предложил понятие побочной валентности. Вслед за этим (в 1893 г.) он ввел в химию понятие координационного числа, которое соответствует числу атомов или групп, непосредственно связанных с атомом, считающимся в молекуле центральным. Эти связанные с центральным атомом частицы, роль которых могут играть атомы, группы атомов, элементарные и сложные ионы, в настоящее время названы лигандами. Таким образом, координационное число показывает, сколько лигандов скоординировано около центрального атома.
С течением времени понятие побочной валентности постепенно утрачивало свое значение, понятие же координационного числа оказалось чрезвычайно плодотворным. Первоначально же Вернер подчеркивал, что понятие координационного числа есть чисто экспериментальное.
Значения координационного числа обычно соответствуют числу вершин в правильных многогранниках (тетраэдр – 4, октаэдр – 6, куб – 8, додекаэдр – 12) или в простейших правильных плоских фигурах (отрезок прямой линии – 2, равносторонний треугольник – 3, квадрат – 4).

На главную страницу <<<

Hosted by uCoz