........................................................

Задать вопрос – НА ФОРУМЕ
Получить информацию – В РАЗДЕЛАХ
Сказать спасибо – В ГОСТЕВОЙ
Искать – ЗДЕСЬ

Что:
где:

........................................................

Возьми кнопку себе на сайт!

<a href="http://w-rabbit.narod.ru">
<img src="http://w-rabbit.narod.ru/w-rabbit.gif"
width=88 hight=31 border=0></a>

........................................................

© 2001. Design by Grayscale

........................................................


Н. Л. Глинка

Кислород

Кислород в природе. Воздух. Кислород (Oxygenium) — самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Общее количество кислорода в земной коре близко к половине ее массы (около 47%).
Природный кислород состоит из трех стабильных изотопов: 16O (99,76%), 17O (0,04%) и 18O (0,2%).
Атмосферный воздух представляет собой смесь многих газов. Кроме кислорода и азота, образующих основную массу воздуха, в состав его входят в небольшом количестве благородные газы, диоксид углерода и водяные пары. Помимо перечисленных газов, в воздухе содержится еще большее или меньшее количество пыли и некоторые случайные примеси. Кислород, азот и благородные газы считаются постоянными составными частями воздуха, так как их содержание в воздухе практически повсюду одинаково. Содержание же диоксида углерода, водяных паров и пыли может изменяться в зависимости от условий.
Диоксид углерода образуется в природе при горении дерева и угля, дыхании животных, гниении. Особенно много CO2 как продукта сжигания огромных количеств топлива поступает в атмосферу в больших промышленных центрах.
В некоторых местах земного шара CO2 выделяется в воздух вследствие вулканической деятельности, а также из подземных источников. Несмотря на непрерывное поступление диоксида углерода в атмосферу, содержание его в воздухе довольно постоянно, составляя в среднем около 0,03% (об.). Это объясняется поглощением диоксида углерода растениями, а также его растворением в воде.
Водяные пары могут находиться в воздухе в различных количествах. Содержание их колеблется от долей процента до нескольких процентов и зависит от местных условий и от температуры.
Пыль, находящаяся в воздухе, состоит главным образом из мельчайших частиц минеральных веществ, образующих земную кору, частичек угля, пыльцы растений, а также различных бактерий. Количество пыли в воздухе очень изменчиво: зимой ее меньше, летом больше. После дождя воздух становится чище, так как капли дождя увлекают с собой пыль.
Наконец, к случайным примесям воздуха относятся такие вещества, как сероводород и аммиак, выделяющиеся при гниении органических остатков; диоксид серы SO2, получающийся при обжиге сернистых руд или при горении угля, содержащего серу; оксиды азота, образующиеся при электрических разрядах в атмосфере, и т. п. Эти примеси обычно встречаются в ничтожных количествах и постоянно удаляются из воздуха, растворяясь в дождевой воде.
Если учитывать только постоянные составные части воздуха, то его состав можно выразить данными, приведенными в таблице.
 Составная часть воздуха                 Содержание, %
                                 по объему        по массе
Азот                               78,2             75,5
Кислород                           20,9             23,2
Благородные газы                    0,9              1,3
Масса 1 л воздуха при 0°C и нормальном атмосферном давлении равна 1,293 г. При температуре –140°C и давлении около 4 МПа воздух конденсируется в бесцветную прозрачную жидкость.
Несмотря на низкую при обычнм давлении температуру кипения (около –190°C), жидкий воздух можно довольно долго сохранять в сосудах Дьюара — стеклянных сосудах с двойными стенками, из пространства между которыми воздух откачан.
В жидком воздухе легко переходят в твердое состояние этиловый спирт, диэтиловый эфир и многие газы. Если, например, пропускать через жидкий воздух диоксид углерода, то он превращается в белые хлопья, похожие по внешнему виду на снег. Ртуть, погруженная в жидкий воздух, становится твердой и ковкой.
Многие вещества, охлажденные жидким воздухом, резко изменяют свои свойства. Так, цинк и олово становятся настолько хрупкими, что легко превращаются в порошок, свинцовый колокольчик издает чистый звенящий звук, а замороженный резиновый мячик разбивается вдребезги, если уронить его на пол.
Поскольку температура кипения кислорода (–183°C) лежит выше, чем температура кипения азота (–195,8°C), то кислород легче превращается в жидкость, чем азот. Поэтому жидкий воздух богаче кислородом, чем атмосферный. При хранении жидкий воздух еще больше обогащается кислородом вследствие преимущественного испарения азота.
Жидкий воздух производят в больших количествах. Он используется главным образом для получения из него кислорода, азота и благородных газов; разделение производят путем ректификации — дробной перегонки.
Получение и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772 г., а затем в 1774 г. Д. Пристли (Англия), который выделил его из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.
В настоящее время в промышленности кислород получают из воздуха. В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, например перманганата калия:

2KMnO4 —> K2MnO4 + MnO2 + O2

Кислород — бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 л кислорода при нормальных условиях равна 1,43 г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100 объемов воды при 0°C растворяют 4,9, а при 20°C — 3,1 объема кислорода.
Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью: стандартная энтальпия атомизации кислорода равна 498 кДж/моль. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500°C она становится заметной.
Магнитные свойства кислорода указывают на наличие в молекуле O2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных пи-орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.
Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота (II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением.
Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.
Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов — дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, — тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2, воду и азот), а последние вновь вступают в общий круговорот веществ в природе.
Применение кислорода весьма разнообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затрудненном дыхании.

Смеси жидкого кислорода с угольным порошком, древесной мукой или другими горючими веществами называются оксиликвитами. Они обладают очень сильными взрывчатыми свойствами и применяются при подрывных работах.

Озон. При пропускании электрических искр через кислород или воздух появляется характерный запах, причиной которого является образование нового вещества — озона. Озон можно получить из совершенно чистого сухого кислорода; отсюда следует, что он состоит только из кислорода и представляет собой его аллотропическое видоизменение.
Молекулярная масса озона равна 48. Атомная же масса кислорода равна 16; следовательно, молекула озона состоит из трех атомов кислорода.
Для получения озона пользуются действием тихих электрических разрядов на кислород. Приборы, служащие для этой цели, называются озонаторами.
При обычных условиях озон — газ. От кислорода его можно отделить сильным охлаждением; озон конденсируется в синюю жидкость, кипящую при –111,9°C.
Растворимость озона в воде значительно больше, чем кислорода: 100 объемов воды при 0°C растворяют 49 объемов озона.
Образование озона из кислорода можно вырзить уравнением

3O2 = 2O3 – 285 кДж

из которого следует, что стандартная энтальпия образования озона положительна и равна 142,5 кДж/моль. Кроме того, как показывают коэффициенты уравнения, в ходе этой реакции из трех молекул газа получаются две молекулы, т. е. энтропия системы уменьшается. В итоге, стандартное изменение энергии Гиббса в рассматриваемой реакции также положительно (163 кДж/моль). Таким образом, реакция превращения кислорода в озон самопроизвольно протекать не может: для ее осуществления необходима затрата энергии. Обратная же реакция — распад озона — протекает самопроизвольно, так как в ходе этого процесса энергия Гиббса системы уменьшается. Иначе говоря, озон — неустойчивое вещество.
Молекула озона построена в форме равнобедренного треугольника. Близость угла при вершине треугольника к 120° указывает на то, что центральный атом кислорода находится здесь в состоянии sp2-гибридизации. В соответствии с этим, образование молекулы O3 можно описать следующим образом.
Гибридная sp2-орбиталь центрального атома, содержащая один электрон, перекрывается с px-орбиталью одного из крайних атомов кислорода, в результате чего образуется сигма-связь. Не участвующая в гибридизации pz-орбиталь центрального атома, ориентированная перпендикулярно к плоскости молекулы и также содержащая неспаренный электрон, перекрывается с аналогично расположенной pz-орбиталью того же крайнего атома кислорода, что приводит к образованию пи-связи. Наконец, выступая в качестве донора электронной пары, занимающей одну из гибридных sp2-орбиталей, центральный атом кислорода образует по донорно-акцепторному способу сигма-связь с другим крайним атомом кислорода.
Озон — один из сильнейших окислителей. Он окисляет все металлы, кроме золота и платиновых металлов, а также большинство неметаллов. Он переводит низшие оксиды в высшие, а сульфиды металлов — в их сульфаты. В ходе большинства этих реакций молекула озона теряет один атом кислорода, переходя в молекулу O2.
Из раствора йодида калия озон выделяет йод:

2KI + H2O + O3 = I2 + 2KOH + O2

Если поместить в воздух, содержащий озон, бумажку, смоченную растворами KI и крахмала, то она тотчас же синеет. Этой реакцией пользуются для открытия озона.
Как сильный окислитель озон убивает бактерии и потому применяется для обеззараживания воды и для дезинфекции воздуха.
Озон ядовит. Предельно допустимым является его содержание в воздухе, равное 10–5%. При этой концентрации хорошо ощущается его запах. В приземном слое атмосферы содержание озона обычно лежит в пределах 10–7—10–6%; он образуется в атмосфере при электрических разрядах.

На главную страницу <<<

Hosted by uCoz